2v^2+15v+29(u+2)=0

Simple and best practice solution for 2v^2+15v+29(u+2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2v^2+15v+29(u+2)=0 equation:


Simplifying
2v2 + 15v + 29(u + 2) = 0

Reorder the terms:
2v2 + 15v + 29(2 + u) = 0
2v2 + 15v + (2 * 29 + u * 29) = 0
2v2 + 15v + (58 + 29u) = 0

Reorder the terms:
58 + 29u + 15v + 2v2 = 0

Solving
58 + 29u + 15v + 2v2 = 0

Solving for variable 'u'.

Move all terms containing u to the left, all other terms to the right.

Add '-58' to each side of the equation.
58 + 29u + 15v + -58 + 2v2 = 0 + -58

Reorder the terms:
58 + -58 + 29u + 15v + 2v2 = 0 + -58

Combine like terms: 58 + -58 = 0
0 + 29u + 15v + 2v2 = 0 + -58
29u + 15v + 2v2 = 0 + -58

Combine like terms: 0 + -58 = -58
29u + 15v + 2v2 = -58

Add '-15v' to each side of the equation.
29u + 15v + -15v + 2v2 = -58 + -15v

Combine like terms: 15v + -15v = 0
29u + 0 + 2v2 = -58 + -15v
29u + 2v2 = -58 + -15v

Add '-2v2' to each side of the equation.
29u + 2v2 + -2v2 = -58 + -15v + -2v2

Combine like terms: 2v2 + -2v2 = 0
29u + 0 = -58 + -15v + -2v2
29u = -58 + -15v + -2v2

Divide each side by '29'.
u = -2 + -0.5172413793v + -0.06896551724v2

Simplifying
u = -2 + -0.5172413793v + -0.06896551724v2

See similar equations:

| 4(x+2)+3(x-1)=10 | | 12*s^3+19*s^2+8*s+1=0 | | 4(x-2)-3=-12 | | 3(x+1)+4=12 | | -10=-8+x/4 | | 7n+12=13n-6 | | 6+x/4=3 | | 2x+1=3-6x | | 4p+6=5p-1 | | x/4+7=4 | | -22-x=5+6+9 | | 2(x+3)+3(x+1)=10 | | 5+2(x-8)=-4 | | 2u^3+7u^2-12u-42=0 | | 20x+3=2x-9 | | 3(x-4)+8=7 | | 5(x+2)+7=19-x | | 2(x+3)-6=5 | | 4p+6=5p+1 | | 3(x+7.50)=37.50 | | 7a-3(a+8)=0 | | 12x-2x-8x=-15 | | x^2+3x-2.25=0 | | 14x^2-39x+10=0 | | 2x+5=1.50x+4 | | 2x+4x+3x=30 | | (10x^6+8x^4)=x | | (10x^6+8x^4)= | | 3(3x+4)=2(4x-4)-5 | | 10(2-x)=5 | | -5(x+6)=22-3x | | -3(3x-1)=-1 |

Equations solver categories